Chaotic time series prediction with employment of ant colony optimization

نویسندگان

  • Vasilii A. Gromov
  • Artem N. Shulga
چکیده

In this study, the novel method to predict chaotic time series is proposed. The method employs the ant colony optimization paradigm to analyze topological structure of the attractor behind the given time series and to single out the typical sequences corresponding to the different part of the attractor. The typical sequences are used to predict the time series values. The method was applied to time series generated by the Lorenz system, the Mackey–Glass equation, and weather time series as well. The method is able to provide robust prognosis to the periods comparable with the horizon of prediction. 2012 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hybrid ANFIS with ant colony optimization algorithm for prediction of shear wave velocity from a carbonate reservoir in Iran

Shear wave velocity (Vs) data are key information for petrophysical, geophysical and geomechanical studies. Although compressional wave velocity (Vp) measurements exist in almost all wells, shear wave velocity is not recorded for most of elderly wells due to lack of technologic tools. Furthermore, measurement of shear wave velocity is to some extent costly. This study proposes a novel methodolo...

متن کامل

Enhanced Ant Colony Optimization with Dynamic Mutation and Ad Hoc Initialization for Improving the Design of TSK-Type Fuzzy System

This paper proposes an enhanced ant colony optimization with dynamic mutation and ad hoc initialization, ACODM-I, for improving the accuracy of Takagi-Sugeno-Kang- (TSK-) type fuzzy systems design. Instead of the generic initialization usually used in most population-based algorithms, ACODM-I proposes an ad hoc application-specific initialization for generating the initial ant solutions to impr...

متن کامل

A modified ant colony optimization algorithm based on differential evolution for chaotic synchronization

Optimization algorithms inspired by the ants’ foraging behavior have been initially used for solving combinatorial optimization problems. Since the emergence of ant algorithms as an optimization tool, some attempts were also made to use them for tackling continuous optimization problems. In recent years, the investigation of synchronization and control problem for discrete chaotic systems has a...

متن کامل

An Ant-Colony Optimization Clustering Model for Cellular Automata Routing in Wireless Sensor Networks

High efficient routing is an important issue for the design of wireless sensor network (WSN) protocols to meet the severe hardware and resource constraints. This paper presents an inclusive evolutionary reinforcement method. The proposed approach is a combination of Cellular Automata (CA) and Ant Colony Optimization (ACO) techniques in order to create collision-free trajectories for every agent...

متن کامل

Study on an Improved ACO Algorithm Based on Multi-Strategy in Solving Function Problem

In order to overcome the blindness of chaotic search, improve the convergence speed and global solving ability of the basic ant colony optimization(ACO) algorithm, an improved ACO algorithm based on combining multi-population strategy, adaptive adjustment pheromone strategy, chaotic search method and min-max ant strategy (MPCSMACO)is proposed in this paper. In the proposed MPCSMACO algorithm, t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 39  شماره 

صفحات  -

تاریخ انتشار 2012